Plenary Session

Panel II : The future in marine engines

GA 634135

Final Meeting and Forum, Augsburg, 10th October 2018

Panel II Members

Panel II: The future in marine engines	
Name	Organization
Gunnar Stiesch	MAN ES AUG
Niels Kjemtrup	MAN ES CPH
Mikael Wideskog	WFI
Konrad Räss	WinGD
Nikolaos Kyrtatos (Moderator)	NTUA

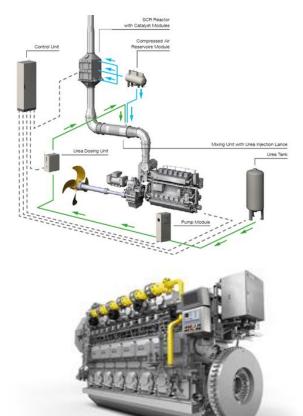
The Future in Narine Engines HERCULES-2 Final meeting & Forum: Panel II

Dr. Gunnar Stiesch Senior Vice President - Engineering Engines 10.10.2018

Major Achievements (since ~2005)

Medium Speed Marine Engines

- Efficiency Increase (~3%-pts.) / sfoc Reduction (~10...12 g/kWh)
 - Firing pressure 250+ bar
 - 2-stage turbocharging, Miller, variable valve train
 - High pressure, flexible fuel injection
 - Tribology and friction


Emission Reduction

- NOx-reduction -80% (SCR)
- Sulfur (fuels, scrubber)
- Smoke (injection, combustion, var. valve train)

Fuel Flexibility

- LNG with DF-technology
- Tier III compliance in gas mode
- Highest efficiency

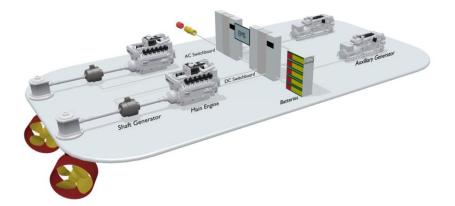
Expected Future Trends (2020 - 2030)

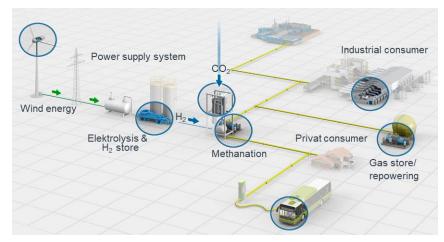
Medium Speed Marine Engines

> Additional Efficiency Improvements

- Further improvements and penetration of new technologies into fleet

Continued Emission Reduction


- NOx, SOx, Black Carbon, CH4


System Optimization incl. Hybrids

- Plant layout and operational optimization
- Battery hybrids

Decarbonization

- Carbon reduced and carbon neutral fuels (PtX)
- Digitization & Autonomous Operation
 - Operational optimization
 - Maintenance and availability
 - Remote controlled or autonomous operation?

System Optimization incl. Hybrids

Reduced Fuel Consumption & Emissions & OPEX

EcoLoad

- Multiple engine plants
- Keep individual engines at optimum load

Include route planning and component demands, e.g. SCR regeneration

HyProp Eco

- Highest propulsion efficiency
- Variable engine & propeller speed

- **Battery Hybrids**
- Peak shaving and max. efficiency
- Spinning reserve
- Reduced running hours
- Zero emission harbor operation

Condition Based Maintenance

- Online monitoring of engines
- Extent maintenance intervals
- Further enhance availability
- Efficiency optimization

Decarbonization

Decarbonized Fuels

From low-carbon fuels to carbon-neutral fuels:

- Methane CH₄ (CNG, LNG) 🧭
- Methanol CH₃-OH, LPG
- Hydrogen H₂ ??
- Ammonia NH₃ ??
- Renewable synthetic fuels Power-to-X
 - Synthetic Natural Gas (SNG)
 - Synthetic Methanol
- => Regulations necessary to credit renewable fuels

MES methanation reactor for the Power-to-Methane plant in Werlte (world's largest methanation plant)

Digitalization & Autonomous

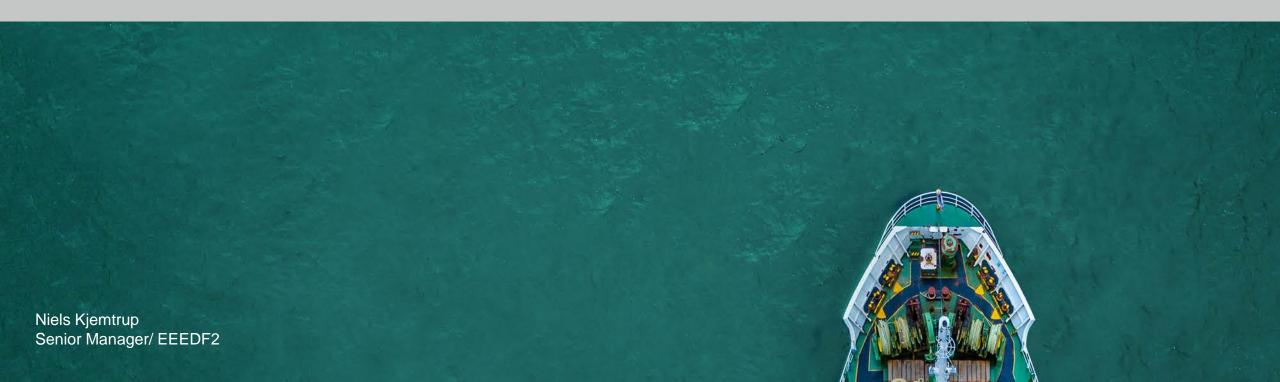
From Engine Data to Customer Service

validation autonomous levels_{local} digital system integration subsea shipping standardisation Simplification operation maintenace regulations smart modular architecture power station future seefarer automotos solution provider

Summary

Future in Marine Medium Speed Engines

- Significant improvements in efficiency and emissions achieved since ~2005
- Fleet penetration as well as further optimization of efficiency and emission reduction
- > System integration and optimization incl. hybrids
- Decarbonization with low carbon and carbon-neutral fuels
- Digitization



(Engine) optimization becomes more holistic – The innovation speed will not slow down!

Marine engines in the future MAN ES 2-stroke engines HERCULES-2 Final meeting & Forum: Panel II

Main Achievements in Hercules timeframe

Knowhow

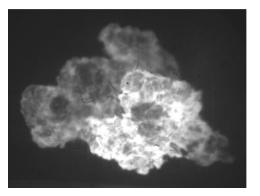
- Increased knowledge on combustion, friction---

> Overall Propulsion efficiency improved significantly via

- Improved engine efficiency
- Improved propulsion efficiency (Super Long Stroke engines)
- Full implementation of Electronic controlled engines
- Derating and Part/Low load optimization
- Utilization of Tier III equipment for Tier II SFOC reduction (ECO-EGR/ECO-SCR)

Emission Reduction

- Tier III compliance via EGR/SCR and ...
- Sulfur (MDO,MGO,ULSF,LNG,LPG,MeOH,LEG,scrubber)


Fuel Flexibility with same high fuel efficiency

- Standard engines for HFO/MDO/MGO
- Slightly modified standard engines for Bio Fuels
- GI-engines for gaseous Gas engines Methane/Ethane
- LGI-engines for liquid Gas engines Methanol/Propane

Super long stroke engines

GI/LGI Dual Fuel

High Speed imaging

EGR Unit

Niels Kjemtrup-Hercules 2 Panel on Future Marine Engines - ©2018

Why continue with "diesel" engines ?

Low Speed Marine Engines

High efficiency (low CO2/GHG footprint)

- Continued development of the engine
- Combined Cycle/WHR development
- PTO/PTI/battery integration

The "clean" Diesel engine

- No ----- NOx, SOx, Black Carbon, CH4, internal process development/aftertrestment

Fuel Flexibility Including carbon neutral fuels

- Development for fossil clean fuels "breaking the ice" for same fuels in bio version
- MeOH, Ammonia ?, H2 ?

> Digitization

- Operational optimization
- On line software updating
- Development via significant increase dataflow
- Maintenance/overhaul based on digital dataflow

Digital Implementation of a maritime industry infrastructure for data sharing

to optimize

The Future

Low Speed Marine Engines

The engine

- Full fuel flexibility
- No unplanned maintenance
- Seamless integration with onboard and onshore systems

The Climate

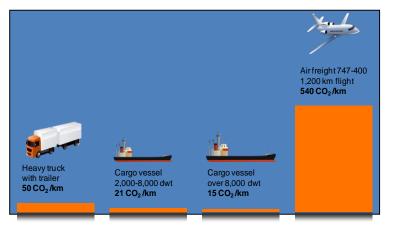
- **Engine-integrated** emission reduction technologies

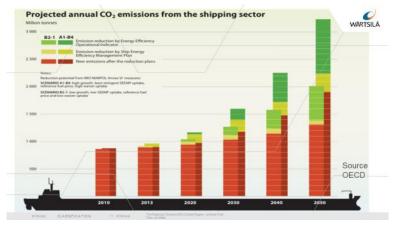
Digital operation

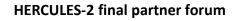
- Virtual assistance
- Recognizes reacts and guide operator on problem handling
- Data analyzed **across the fleet** to optimize operation

Why "diesel" engines ?

Marine low Speed Engines


- Efficient, simple, reliable, reliable, reliable and "cheap"
- > Even more fuel flexible in the future, the multi-fuel engine
- Clean in combination with clean fuels and integrated after treatment systems
- Ready for carbon free fuels
- > Digitization and electronic control secure optimal operation under all conditions


The future in marine engines


- Future fuels
- Smart marine ecosystem
 - What are the future fuels?
 - How do we utilize as little as we can of them?

The Internal Combustion Engine is an important building block on the journey towards a sustainable society Shipping is today the most efficient means to transport people or goods

If we do nothing: A recent estimate forecasts that CO_2 emissions from ships will increase by up to 250% in the next 35 years, and could represent 14% of total global emissions by 2050

The Smart Marine Ecosystem

THE VOYAGE OF THE FUTURE REQUIRES AN INDUSTRY TRANSFORMATION

* Wärtsilä case study from one major port identified the range of 100-200 million euros per year of

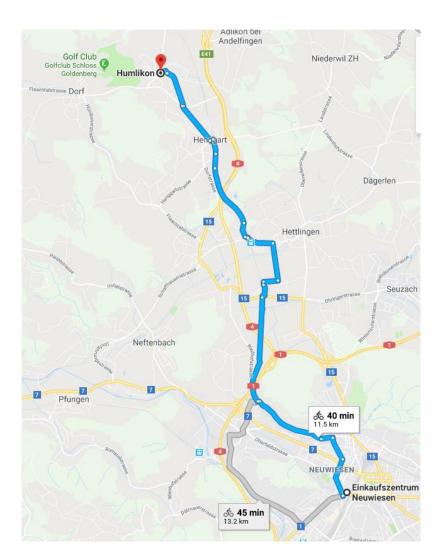
Towards zero emission for newbuilds Legislation - need to reduce/stop emissions

Maximise use of new technology: energy storage, connectivity, modular, clean fuels

Invest in clean solutions Carbon Pricing will make it pay off.

Hercules II, the future in marine engines

Konrad Räss, Director R&D


Does the large piston engine have a long term future in marine propulsion?

Av. Speed 35km/h = 19 kn 11 Ah/400 Wh Battery

Does the large piston engine have a long term future in marine propulsion?

One trip approx. 12km

Does the large piston engine have a long term future in marine propulsion?

Does the large piston engine have a long term future in marine propulsion?

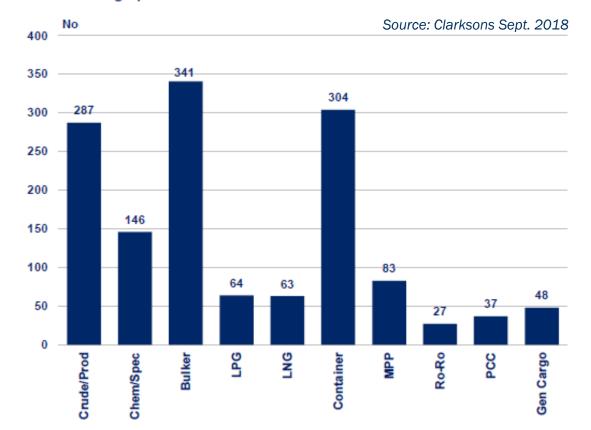
Engine with approx. 75'000kW max. output

Does the large piston engine have a long term future in marine propulsion?

Example Hamburg Shanghai Realistic alternatives to IC engines for a vessel as shown before?

How much battery capacity needed?

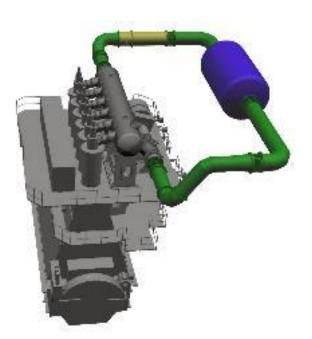
Other sources of electricity?


Oher propulsion methods?

Predicted average annual orders next 10 years

Overall only average numbers

- Tankers incl. Chem/Spec remains the biggest segment by numbers
- Bulk Carrier ordering will not explode like in 2007/8
- LNG is becoming a major segment
- Container stronger on smaller size end then bigger size
- Gen Cargo remains weak even though it is the oldest fleet overall



No of orders average per annum 2018-2027

Does the large piston engine have a long term future in marine propulsion?

Yes, but....or DF

Some statements to the Panel II questions

- Electric drive alone can make sense for short distances, for example electro Tug boats
- PTI/PTO seen as pragmatic hybrid solution for 2-stroke application
- Energy from peripheral power
- The 2-stroke engine is an omnivore that can "digest" many kinds of fuels, possibly also the ones in the future
- Fuels that can use the todays logistic chain will have a good chance to be used in future
- Future legislation will have a strong impact on the "future" fuel
- Our customers will use the cheapest fuels that fulfil legislation standards
- Crew education must follow the fast increasing technology
- Intelligent components and other measures for improved condition based maintenance are needed, for cost optimization and to maintain emission standards

Some statements to the Panel II questions

• Self-Healing Engines...

Picture, damaged cylinder liner, source Google

• Probably still a dream...

WinGD thanks

- EU, Horizon 2020
- Prof. Kyrtatos & Team
- BFE Switzerland, Mr. Renz
- Our host MAN
- Partners & Sponsors
- All involved participants

